模具外文文献翻译挤压模具概述[中文4400字] 【中英文WORD】.zip
外文资料翻译Overview of adaptable die design for extrusionsW.A.Gordon.C.J.Van Tyne.Y.H.MoonABSTRACTThe term“adaptable die design”is used for the methodology in which the tooling shape is determined or modified to produce some optimal property in either product or process.The adaptable die design method,used in conjunction with an upper bound model,allows the rapid evaluation of a large number of die shapes and the discovery of the one that produces the desired outcome.In order for the adaptable die design method to be successful,it is necessary to have a realistic velocity field for the deformation process through extrusion dies of any shape and the velocity field must allow flexibility in material movement to achieve the required material flow description.A variety of criteria can be used in the adaptable die design method.For example,dies which produce minimal distortion in the product.A double optimization process is used to determine the values for the flexible variables in the velocity field and secondly to determine the die shape that best meets the given criteria.The method has been extended to the design of dies for nonaxisymmetric product shapes.2006 Elsevier B.V.All rights reserved.Keywords:Extrusion;Die design;Upper bound approach;Minimum distortion criterion1.IntroductionNew metal alloys and composites are being developed to meet demanding applications.Many of these new materials as well as traditional materials have limited workability.Extrusion is a metalworking process that can be used to deform these difficult materials into the shapes needed for specific applications.For a successful extrusion process,metalworking engineers and designers need to know how the extrusion die shape can affect the final product.The present work focuses on the design of appropriate extrusion die shapes.A methodology is presented to determine die shapes that meet specific criteria:either shapes which produce product with optimal set of specified properties,such as minimum distortion in the extrudate,or shapes which produce product by an optimized process,such as minimum extrusion pressure.The term“adaptable die design”is used for the method nology in which the die shape is determined or modified to produce some optimal property in either product or process.This adaptable die design method,used in conjunction with anupper bound model,allows the rapid evaluation of a large number of die shapes and the discovery of the one that can optimize the desired outcome.There are several conditions that need to be met for the adaptable die design method to be viable.First,a generalized but realistic velocity field is needed for use in an upper bound model to mathematically describe the flow of the material during extrusion through dies of any shape.Second,a robust criterion needs to be established for the optimization of the die shape.The criterion must be useable within an upper bound model.The full details of the method are presented elsewhere 16.In the present paper,following a review of previous models for extrusion,the flexible velocity field for the deformation region in a direct extrusion will be briefly presented.This velocity field is able to characterize the flow through a die of almost any configuration.The adaptable equation,which describes the die shape,is also presented.The constants in this die shape equation are optimized with respect to a criterion.The criterion,which can be used to minimize distortion,is presented.Finally,the shape of an adaptable die,which produces of an extruded product with minimal distortion,is presented.The objective of the present paper is to provide a brief overview of the adaptable die design method.2.Background2.1.Axisymmetric extrusionNumerous studies have analyzed the axisymmetric extrusion of a cylindrical product from a cylindrical billet.Avitzur710 proposed upper bound models for axisymmetric extrusion through conical dies.Zimerman and Avitzur 11 modeled extrusion using the upper bound method,but with generalized shear boundaries.Finite element methods were used by Chen et al.12 and Liu and Chung 13 to model axisymmetric extrusion through conical dies.Chen and Ling 14 and Nagpal 15 analyzed other die shapes.They developed velocity fields for axisymmetric extrusion through arbitrarily shaped dies.Richmond16 was the first to propose the concept of a streamlined die shape as a die profile optimized for minimal distortion.Yang et al.17 as well as Yang and Han 18 developed upper bound models for streamlined dies.Srinivasan et al.19 proposed a controlled strain rate die as a streamlined shape,which improved the extrusion process for materials with limited workability.Lu and Lo 20 proposed a die shape with an improved strain rate control.2.2.Distortion and die shape analysisNumerous analytical and experimental axisymmetric extrusion investigations have examined the die shape and resulting distortion.Avitzur 9 showed that distortion increases with increasing reduction and die angle for axisymmetric extrusion through conical dies.Zimerman and Avitzur 11 and Pan et al.21 proposed further upper bound models,including ones with flexibility in the velocity field to allow the distorted grid to change with friction.They found that increasing friction causes more distortion in the extruded product.Chen et al.12 confirmed that distortion increases with increasing reduction,die angle,and friction.Other research work has focused on nonconical die shapes.Nagpal 15 refined the upper bound approach to study alternative axisymmetric die shapes.Chen and Ling 14 used the upper bound approach to study the flow through cosine,elliptic,and hyperbolic dies in an attempt to find a die shape,which minimized force and redundant strain.Richmond and Devenpeck 16,22,23,instead of assuming a particular type of die shape,decided to design a die based upon some feature of the extruded product.Using slip line analysis and assuming ideal and frictionless conditions,Richmond 16 proposed a streamlined sigmoidal die,which has smooth transitions at the die entrance and exit.The streamlined die shape is the basis for many efforts in axisymmetric extrusion die design.Yang et al.17,Yang and Han 18,and Ghulman et al.24 developed upper bound models using streamlined dies.Certain materials,such as metal matrix composites,can be successfully extruded only in a narrow effective strain rate range,leading to the development of controlled strain rate dies.The control of the strain rate in the deformation zone came from studies that showed fiber breakage during the extrusion of whisker reinforced composites decreases when peak strain rate was minimized 25.Initially developed by Srinivasan et al.19,the streamlined die shape attempts to produce a constant strain rate throughout a large region of the deformation zone.Lu and Lo 20 used a refined slab method to account for friction and material property changes in the deformation zone.Kim et al.26 used FEM to design an axisymmetric controlled strain rate die.They used Bezier curves to describe the die shape and minimized the volumetric effective strain rate deviation in the deformation zone.2.3.Threedimensional nonaxisymmetric extrusion analysisBoth the upper bound and finite element techniques have been used to analyze threedimensional nonaxisymmetric extrusions.Nagpal 27 proposed one of the earliest upper bound analyses for nonaxisymmetric extrusion.Upper bound and finite element models were developed Basily and Sansome28,Boer et al.29,and Boer and Webster 30.Kiuchi 31 studied nonaxisymmetric extrusions through straight converging dies.Gunasekera and Hoshino 3234 used an upper bound model to study the extrusion of polygonal shapes through converging dies as well as through streamlined dies.Wu and Hsu 35 proposed a flexible velocity field to extrude polygonal shapes through straight converging dies.Han et al.36 created a velocity field from their previous axisymmetric upper bound model 37 in order to study extrusion through streamlined dies that produced clovershaped sections.Yang et al.37 applied a general upper bound model to study extrusion of elliptic and rectangular sections.Han and Yang 38 modeled the extrusion of trocoidal gears.Yang et al.39 also used finite element analysis to confirm the experimental and upper bound analysis of the clover sections.Nonaxisymmetric threedimensional extrusions have been studied further by using upper bound elemental technique 40 and spatial elementary rigid zones 41,42.Streamlined dies have been the proposed die shape for most threedimensional extrusion.The shape of the die between the entrance and exit has been selected by experience and feel rather than rigorous engineering principles.Nagpal et al.43 assumed that the final position of a point that was initially on the billet is determined by ensuring that area reduction of local segments was the same as the overall area reduction.Once the final position of a material point was assumed,a third order polynomial was fit between the die entrance and exit points.Gunasekera et al.44 refined this method to allow for reentrant geometries.Ponalagusamy et al.45 proposed using Bezier curves for designing streamlined extrusion dies.Kang and Yang46 used finite element models to predict the optimal bearing length for an“L”shape extrusion.Studies on the design of threedimensional extrusion dies have been limited.The controlled strain rate concept has only been applied to axisymmetric extrusions and not to threedimensional extrusions 19,20,26.3.The adaptable die design methodThe adaptable die design method has been developed and is described in detail in a series of papers 15.The method has been extended to nonaxisymmetric threedimensional extrusion of a round bar to a rectangular shape 6.The major criterion used in developing the method was to minimize the distortion in the product.The present paper provides a brief overview of the method and results from these previous studies.Fig.1.Schematic diagram of axisymmetric extrusion using spherical coordinate system through a die of arbitrary shape3.1.Velocity fieldAn upper bound analysis of a metal forming problem requires a kin matically admissible velocity field.Fig.1 shows the process parameters in a schematic diagram with a spherical coordinate system(r,)and the three velocity zones that are used in the upper bound analysis of axisymmetric extrusion through a die with an arbitrary die shape.The material is assumed to be a perfectly plastic material with flow strength,0.he friction,which exists between the deformation zone in he work piece and the die,is characterized by a frictional shear tress,0/3mf,where the constant friction factor,mf,can take values from 0 to 1.The material starts as a cylinder of radius Ro and is extruded into a cylindrical product of radius fR.Rigid body flow occurs in zones I and III,with velocities of 0v and fv,respectively.Zone II is the deformation region,where the velocity is fairly complex.Two spherical surfaces of velocity discontinuity 1 and 2 separate the three velocity zones.The surface 1 is located a distance 0rfrom the origin and the surface 2 is located a distance fr from the origin.The coordinate system is centered at the convergence point of the die.The convergence point is defined by the intersection of the axis of symmetry with a line at angle that goes through the point where the die begins its deviation from a cylindricalshape and the exit point of the die.Fig.1 shows the position of the coordinate system origin.The die surface,which is labeled (r)in Fig.1,is given in the spherical coordinate system.(r)is the angular position of the die surface as a function of the radial distance from the origin.The die length for the deformation region is given by the parameter L.The best velocity field to describe the flow in the deformation region is the sine1 velocity field 1,2.This velocity field uses a base radial velocity,rv,which is modified by an additional term comprised to two functions with each function containing pseudoindependent parameters to determine the radial velocity component in zone II:rrUv (1)The function permits flexibility of flow in the radial,r,direction,and the function permits flexibility of flow in the angular,direction.The value of rv is determined by assuming proportional distances in a cylindrical sense from the centreline:2002sincossinrrvvr (2)This velocity field was found to be the best representation of the flow in the deformation region of an extrusion process for an arbitrarily shaped die.The function is represented as a series of Legendre polynomials that are orthogonal over deformation zone.The representation of is:0aniiiAP x (3)Where 0002/11/ffRRrxwithRRria being the coefficients of the Lengendre polynomials Pi(x)and anbeing the order of the representation.There is a restriction that:13anoddiiAA，02aneveniiAA (4)The remaining higher order coefficients(A2 to Aan)are the pseudoindependent parameters,with values determined by minimization of the total power.Legendre polynomials are used so that higher order terms can be added to the function without causing significant changes in the coefficients of the lower order polynomials.This feature of the Legendre polynomials occurs because they are orthogonal over a finite distance.The function that satisfies the boundary conditions and allows the best description of the flow is:011 cos1 cosbiniiBB (5)where011bniiBBi and the high order coefficients B1 to Bbn are pseudoindependent parameters with values determined by minimization of the total power.The order of the representation is bn.It has been shown 3 that an=6 and bn=2 are usually sufficient to provide reasonable flexibility for the flow field in the deformation region.3.2.Die shapeThe die shape is described by the function(r).The adaptable die shape is described by a set of Legendre polynomials:0cniiic px (6)where0002/11/ffRRrxwithrRRand icbeing the coefficients of the Legendre polynomials Pi(x).The order of the Legendre polynomial representation is cn.The boundary conditions at the entrance and exit of the deformation region require that:At r=0r,=At r=fr ,=(7)If a streamlined die is used then this function must meet two additional boundary conditions:At r=0r,0tanrr At r=fr,00tanfRrrR (8)3.3.Distortion criteriaThe criterion that was found to minimize the distortion in the extrusion product involves minimizing the volumetric effective strain rate deviation 4,5.The volumetric effective strain rate deviation in the deformation zone is:Wherewith:(10)and ij are the components of the strain rate field.3.4.Determining the adaptable die shapeThe search for the optimal coefficients for the Legendre polynomials representing the die shape is not constrained.A nested optimization routine is used with the velocity field(inside loop)being minimized with respect to the externally supplied power for the process,and the die shape(outside loop)being adapted to minimize the distortion criterion.The fina
收藏
 资源描述：

外文资料翻译Overview of adaptable die design for extrusionsW.A.Gordon.C.J.Van Tyne.Y.H.MoonABSTRACTThe term“adaptable die design”is used for the methodology in which the tooling shape is determined or modified to produce some optimal property in either product or process.The adaptable die design method,used in conjunction with an upper bound model,allows the rapid evaluation of a large number of die shapes and the discovery of the one that produces the desired outcome.In order for the adaptable die design method to be successful,it is necessary to have a realistic velocity field for the deformation process through extrusion dies of any shape and the velocity field must allow flexibility in material movement to achieve the required material flow description.A variety of criteria can be used in the adaptable die design method.For example,dies which produce minimal distortion in the product.A double optimization process is used to determine the values for the flexible variables in the velocity field and secondly to determine the die shape that best meets the given criteria.The method has been extended to the design of dies for nonaxisymmetric product shapes.2006 Elsevier B.V.All rights reserved.Keywords:Extrusion;Die design;Upper bound approach;Minimum distortion criterion1.IntroductionNew metal alloys and composites are being developed to meet demanding applications.Many of these new materials as well as traditional materials have limited workability.Extrusion is a metalworking process that can be used to deform these difficult materials into the shapes needed for specific applications.For a successful extrusion process,metalworking engineers and designers need to know how the extrusion die shape can affect the final product.The present work focuses on the design of appropriate extrusion die shapes.A methodology is presented to determine die shapes that meet specific criteria:either shapes which produce product with optimal set of specified properties,such as minimum distortion in the extrudate,or shapes which produce product by an optimized process,such as minimum extrusion pressure.The term“adaptable die design”is used for the method nology in which the die shape is determined or modified to produce some optimal property in either product or process.This adaptable die design method,used in conjunction with anupper bound model,allows the rapid evaluation of a large number of die shapes and the discovery of the one that can optimize the desired outcome.There are several conditions that need to be met for the adaptable die design method to be viable.First,a generalized but realistic velocity field is needed for use in an upper bound model to mathematically describe the flow of the material during extrusion through dies of any shape.Second,a robust criterion needs to be established for the optimization of the die shape.The criterion must be useable within an upper bound model.The full details of the method are presented elsewhere 16.In the present paper,following a review of previous models for extrusion,the flexible velocity field for the deformation region in a direct extrusion will be briefly presented.This velocity field is able to characterize the flow through a die of almost any configuration.The adaptable equation,which describes the die shape,is also presented.The constants in this die shape equation are optimized with respect to a criterion.The criterion,which can be used to minimize distortion,is presented.Finally,the shape of an adaptable die,which produces of an extruded product with minimal distortion,is presented.The objective of the present paper is to provide a brief overview of the adaptable die design method.2.Background2.1.Axisymmetric extrusionNumerous studies have analyzed the axisymmetric extrusion of a cylindrical product from a cylindrical billet.Avitzur710 proposed upper bound models for axisymmetric extrusion through conical dies.Zimerman and Avitzur 11 modeled extrusion using the upper bound method,but with generalized shear boundaries.Finite element methods were used by Chen et al.12 and Liu and Chung 13 to model axisymmetric extrusion through conical dies.Chen and Ling 14 and Nagpal 15 analyzed other die shapes.They developed velocity fields for axisymmetric extrusion through arbitrarily shaped dies.Richmond16 was the first to propose the concept of a streamlined die shape as a die profile optimized for minimal distortion.Yang et al.17 as well as Yang and Han 18 developed upper bound models for streamlined dies.Srinivasan et al.19 proposed a controlled strain rate die as a streamlined shape,which improved the extrusion process for materials with limited workability.Lu and Lo 20 proposed a die shape with an improved strain rate control.2.2.Distortion and die shape analysisNumerous analytical and experimental axisymmetric extrusion investigations have examined the die shape and resulting distortion.Avitzur 9 showed that distortion increases with increasing reduction and die angle for axisymmetric extrusion through conical dies.Zimerman and Avitzur 11 and Pan et al.21 proposed further upper bound models,including ones with flexibility in the velocity field to allow the distorted grid to change with friction.They found that increasing friction causes more distortion in the extruded product.Chen et al.12 confirmed that distortion increases with increasing reduction,die angle,and friction.Other research work has focused on nonconical die shapes.Nagpal 15 refined the upper bound approach to study alternative axisymmetric die shapes.Chen and Ling 14 used the upper bound approach to study the flow through cosine,elliptic,and hyperbolic dies in an attempt to find a die shape,which minimized force and redundant strain.Richmond and Devenpeck 16,22,23,instead of assuming a particular type of die shape,decided to design a die based upon some feature of the extruded product.Using slip line analysis and assuming ideal and frictionless conditions,Richmond 16 proposed a streamlined sigmoidal die,which has smooth transitions at the die entrance and exit.The streamlined die shape is the basis for many efforts in axisymmetric extrusion die design.Yang et al.17,Yang and Han 18,and Ghulman et al.24 developed upper bound models using streamlined dies.Certain materials,such as metal matrix composites,can be successfully extruded only in a narrow effective strain rate range,leading to the development of controlled strain rate dies.The control of the strain rate in the deformation zone came from studies that showed fiber breakage during the extrusion of whisker reinforced composites decreases when peak strain rate was minimized 25.Initially developed by Srinivasan et al.19,the streamlined die shape attempts to produce a constant strain rate throughout a large region of the deformation zone.Lu and Lo 20 used a refined slab method to account for friction and material property changes in the deformation zone.Kim et al.26 used FEM to design an axisymmetric controlled strain rate die.They used Bezier curves to describe the die shape and minimized the volumetric effective strain rate deviation in the deformation zone.2.3.Threedimensional nonaxisymmetric extrusion analysisBoth the upper bound and finite element techniques have been used to analyze threedimensional nonaxisymmetric extrusions.Nagpal 27 proposed one of the earliest upper bound analyses for nonaxisymmetric extrusion.Upper bound and finite element models were developed Basily and Sansome28,Boer et al.29,and Boer and Webster 30.Kiuchi 31 studied nonaxisymmetric extrusions through straight converging dies.Gunasekera and Hoshino 3234 used an upper bound model to study the extrusion of polygonal shapes through converging dies as well as through streamlined dies.Wu and Hsu 35 proposed a flexible velocity field to extrude polygonal shapes through straight converging dies.Han et al.36 created a velocity field from their previous axisymmetric upper bound model 37 in order to study extrusion through streamlined dies that produced clovershaped sections.Yang et al.37 applied a general upper bound model to study extrusion of elliptic and rectangular sections.Han and Yang 38 modeled the extrusion of trocoidal gears.Yang et al.39 also used finite element analysis to confirm the experimental and upper bound analysis of the clover sections.Nonaxisymmetric threedimensional extrusions have been studied further by using upper bound elemental technique 40 and spatial elementary rigid zones 41,42.Streamlined dies have been the proposed die shape for most threedimensional extrusion.The shape of the die between the entrance and exit has been selected by experience and feel rather than rigorous engineering principles.Nagpal et al.43 assumed that the final position of a point that was initially on the billet is determined by ensuring that area reduction of local segments was the same as the overall area reduction.Once the final position of a material point was assumed,a third order polynomial was fit between the die entrance and exit points.Gunasekera et al.44 refined this method to allow for reentrant geometries.Ponalagusamy et al.45 proposed using Bezier curves for designing streamlined extrusion dies.Kang and Yang46 used finite element models to predict the optimal bearing length for an“L”shape extrusion.Studies on the design of threedimensional extrusion dies have been limited.The controlled strain rate concept has only been applied to axisymmetric extrusions and not to threedimensional extrusions 19,20,26.3.The adaptable die design methodThe adaptable die design method has been developed and is described in detail in a series of papers 15.The method has been extended to nonaxisymmetric threedimensional extrusion of a round bar to a rectangular shape 6.The major criterion used in developing the method was to minimize the distortion in the product.The present paper provides a brief overview of the method and results from these previous studies.Fig.1.Schematic diagram of axisymmetric extrusion using spherical coordinate system through a die of arbitrary shape3.1.Velocity fieldAn upper bound analysis of a metal forming problem requires a kin matically admissible velocity field.Fig.1 shows the process parameters in a schematic diagram with a spherical coordinate system(r,)and the three velocity zones that are used in the upper bound analysis of axisymmetric extrusion through a die with an arbitrary die shape.The material is assumed to be a perfectly plastic material with flow strength,0.he friction,which exists between the deformation zone in he work piece and the die,is characterized by a frictional shear tress,0/3mf,where the constant friction factor,mf,can take values from 0 to 1.The material starts as a cylinder of radius Ro and is extruded into a cylindrical product of radius fR.Rigid body flow occurs in zones I and III,with velocities of 0v and fv,respectively.Zone II is the deformation region,where the velocity is fairly complex.Two spherical surfaces of velocity discontinuity 1 and 2 separate the three velocity zones.The surface 1 is located a distance 0rfrom the origin and the surface 2 is located a distance fr from the origin.The coordinate system is centered at the convergence point of the die.The convergence point is defined by the intersection of the axis of symmetry with a line at angle that goes through the point where the die begins its deviation from a cylindricalshape and the exit point of the die.Fig.1 shows the position of the coordinate system origin.The die surface,which is labeled (r)in Fig.1,is given in the spherical coordinate system.(r)is the angular position of the die surface as a function of the radial distance from the origin.The die length for the deformation region is given by the parameter L.The best velocity field to describe the flow in the deformation region is the sine1 velocity field 1,2.This velocity field uses a base radial velocity,rv,which is modified by an additional term comprised to two functions with each function containing pseudoindependent parameters to determine the radial velocity component in zone II:rrUv (1)The function permits flexibility of flow in the radial,r,direction,and the function permits flexibility of flow in the angular,direction.The value of rv is determined by assuming proportional distances in a cylindrical sense from the centreline:2002sincossinrrvvr (2)This velocity field was found to be the best representation of the flow in the deformation region of an extrusion process for an arbitrarily shaped die.The function is represented as a series of Legendre polynomials that are orthogonal over deformation zone.The representation of is:0aniiiAP x (3)Where 0002/11/ffRRrxwithRRria being the coefficients of the Lengendre polynomials Pi(x)and anbeing the order of the representation.There is a restriction that:13anoddiiAA，02aneveniiAA (4)The remaining higher order coefficients(A2 to Aan)are the pseudoindependent parameters,with values determined by minimization of the total power.Legendre polynomials are used so that higher order terms can be added to the function without causing significant changes in the coefficients of the lower order polynomials.This feature of the Legendre polynomials occurs because they are orthogonal over a finite distance.The function that satisfies the boundary conditions and allows the best description of the flow is:011 cos1 cosbiniiBB (5)where011bniiBBi and the high order coefficients B1 to Bbn are pseudoindependent parameters with values determined by minimization of the total power.The order of the representation is bn.It has been shown 3 that an=6 and bn=2 are usually sufficient to provide reasonable flexibility for the flow field in the deformation region.3.2.Die shapeThe die shape is described by the function(r).The adaptable die shape is described by a set of Legendre polynomials:0cniiic px (6)where0002/11/ffRRrxwithrRRand icbeing the coefficients of the Legendre polynomials Pi(x).The order of the Legendre polynomial representation is cn.The boundary conditions at the entrance and exit of the deformation region require that:At r=0r,=At r=fr ,=(7)If a streamlined die is used then this function must meet two additional boundary conditions:At r=0r,0tanrr At r=fr,00tanfRrrR (8)3.3.Distortion criteriaThe criterion that was found to minimize the distortion in the extrusion product involves minimizing the volumetric effective strain rate deviation 4,5.The volumetric effective strain rate deviation in the deformation zone is:Wherewith:(10)and ij are the components of the strain rate field.3.4.Determining the adaptable die shapeThe search for the optimal coefficients for the Legendre polynomials representing the die shape is not constrained.A nested optimization routine is used with the velocity field(inside loop)being minimized with respect to the externally supplied power for the process,and the die shape(outside loop)being adapted to minimize the distortion criterion.The fina
展开阅读全文